Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 159
Filter
1.
Environ Res ; 252(Pt 4): 119075, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38719065

ABSTRACT

BACKGROUND: Exposure to phenols, endocrine-disrupting chemicals used in personal care and consumer products, is widespread. Data on infant exposures are limited despite heightened sensitivity to endocrine disruption during this developmental period. We aimed to describe distributions and predictors of urinary phenol concentrations among U.S. infants ages 6-12 weeks. METHODS: The Infant Feeding and Early Development (IFED) study is a prospective cohort study of healthy term infants enrolled during 2010-2013 in the Philadelphia region. We measured concentrations of seven phenols in 352 urine samples collected during the 6- or 8- and/or 12-week study visits from 199 infants. We used linear mixed models to estimate associations of maternal, sociodemographic, infant, and sample characteristics with natural-log transformed, creatinine-standardized phenol concentrations and present results as mean percent change from the reference level. RESULTS: Median concentrations (µg/L) were 311 for methylparaben, 10.3 for propylparaben, 3.6 for benzophenone-3, 2.1 for triclosan, 1.0 for 2,5-dichlorophenol, 0.7 for BPA, and 0.3 for 2,4-dichlorophenol. Geometric mean methylparaben concentrations were approximately 10 times higher than published estimates for U.S. children ages 3-5 and 6-11 years, while propylparaben concentrations were 3-4 times higher. Infants of Black mothers had higher concentrations of BPA (83%), methylparaben (121%), propylparaben (218%), and 2,5-dichorophenol (287%) and lower concentrations of benzophenone-3 (-77%) and triclosan (-53%) than infants of White mothers. Triclosan concentrations were higher in breastfed infants (176%) and lower in infants whose mothers had a high school education or less (-62%). Phenol concentrations were generally higher in summer samples. CONCLUSIONS: Widespread exposure to select environmental phenols among this cohort of healthy U.S. infants, including much higher paraben concentrations compared to those reported for U.S. children, supports the importance of expanding population-based biomonitoring programs to infants and toddlers. Future investigation of exposure sources is warranted to identify opportunities to minimize exposures during these sensitive periods of development.

3.
Free Radic Biol Med ; 213: 222-232, 2024 03.
Article in English | MEDLINE | ID: mdl-38262546

ABSTRACT

BACKGROUND: Inflammation and oxidative stress are critical to pregnancy, but most human study has focused on downstream, non-causal indicators. Oxylipins are lipid mediators of inflammation and oxidative stress that act through many biological pathways. Our aim was to characterize predictors of circulating oxylipin concentrations based on maternal characteristics. METHODS: Our study was conducted among 901 singleton pregnancies in the LIFECODES Fetal Growth Study, a nested case-cohort with recruitment from 2007 to 2018. We measured a targeted panel of oxylipins in early pregnancy plasma and urine samples from several biosynthetic pathways, defined by the polyunsaturated fatty acid (PUFA) precursor and enzyme group. We evaluated levels across predictors, including characteristics of participants' pregnancy, socioeconomic determinants, and obstetric and medical history. RESULTS: Current pregnancy and sociodemographic characteristics were the most important predictors of circulating oxylipins concentrations. Plasma oxylipins were lower and urinary oxylipins higher for participants with a later gestational age at sampling (13-23 weeks), higher prepregnancy BMI (obesity class I, II, or III), Black or Hispanic race and ethnicity, and lower socioeconomic status (younger age, lower education, and uninsured). For example, compared to those with normal or underweight prepregnancy BMI, participants with class III prepregnancy obesity had 45-46% lower plasma epoxy-eicosatrienoic acids, the anti-inflammatory oxylipins produced from arachidonic acid (AA) by cytochrome P450, and had 81% higher urinary 15-series F2-isoprostanes, an indicator of oxidative stress produced from non-enzymatic AA oxidation. Similarly, in urine, Black participants had 92% higher prostaglandin E2 metabolite, a pro-inflammatory oxylipin, and 41% higher 5-series F2-isoprostane, an oxidative stress indicator. CONCLUSIONS: In this large pregnancy study, we found that circulating levels of oxylipins were different for participants of lower socioeconomic status or of a systematically marginalized racial and ethnic groups. Given associations differed along biosynthetic pathways, results provide insight into etiologic links between maternal predictors and inflammation and oxidative stress.


Subject(s)
F2-Isoprostanes , Oxylipins , Pregnancy , Female , Humans , Infant , Fatty Acids, Unsaturated , Isoprostanes , Inflammation , Obesity , Arachidonic Acid , Oxidative Stress
4.
Article in English | MEDLINE | ID: mdl-38177334

ABSTRACT

BACKGROUND: Humans are exposed to phthalates, a class of non-persistent chemicals, through multiple products, including personal care and cosmetics. Associations between specific phthalates and product use have been inconsistent. However, determining these connections could provide avenues for exposure reduction. OBJECTIVE: Examine the association between patterns of personal care product use and associations with phthalate and replacement biomarkers. METHODS: In the Human Placenta and Phthalates Study, 303 women were enrolled in early pregnancy and followed for up to 8 visits across gestation. At each visit, women completed a questionnaire about product use in the prior 24 hours and contributed urine samples, subsequently analyzed for 18 phthalate and replacement metabolites. At early, mid-, and late pregnancy, questionnaire responses were condensed and repeated metabolite concentrations were averaged. Latent class analysis (LCA) was used to determine groups of women with similar use patterns, and weighted associations between group membership and biomarker concentrations were assessed. RESULTS: LCA sorted women into groups which largely corresponded to: (1) low fragranced product use (16-23% of women); (2) fragranced product and low body wash use (22-26%); 3) fragranced product and low bar soap use (26-51%); and (4) low product use (7-34%). Monoethyl phthalate (MEP) urinary concentrations were 7-10% lower and concentrations of summed di(2-ethylhexyl) terephthalate metabolites were 15-21% lower among women in the "low fragranced product use" group compared to the population mean. Few other consistent associations between group and biomarker concentrations were noted. IMPACT STATEMENT: Personal care products and cosmetics are a known exposure source for phthalates and potentially represent one of the most accessible intervention targets for exposure reduction. However, in this analysis accounting for concurrent use and fragranced status of products, we did not find any use patterns that corresponded to universally lower levels.

5.
Environ Health Perspect ; 131(8): 87014, 2023 08.
Article in English | MEDLINE | ID: mdl-37606291

ABSTRACT

BACKGROUND: Fetal exposure to organophosphate (OP) pesticides might lead to fetal metabolic adaptations, predisposing individuals to adverse metabolic profiles in later life. OBJECTIVE: We examined the association of maternal urinary OP pesticide metabolite concentrations in pregnancy with offspring body mass index (BMI) and fat measures at 10 years of age. METHODS: Between 2002 and 2006, we included 642 mother-child pairs from the Generation R Study, a population-based prospective cohort study in Rotterdam, the Netherlands. We measured maternal urinary concentrations of OP pesticide metabolites, namely, dialkyl phosphates, including three dimethyl and three diethyl phosphates in early-, mid- and late-pregnancy. At 10 years of age, child total and regional body fat and lean mass were measured through dual energy X-ray absorptiometry, and abdominal and organ fat through magnetic resonance imaging. RESULTS: Higher maternal urinary pregnancy-average or trimester-specific dialkyl, dimethyl, or diethyl phosphate concentrations were not associated with childhood BMI and the risk of overweight. In addition, we did not observe any association of dialkyl, dimethyl, or diethyl phosphate concentrations with total and regional body fat, abdominal visceral fat, liver fat, or pericardial fat at child age of 10 y. CONCLUSION: We observed no associations of maternal urinary dialkyl concentrations during pregnancy with childhood adiposity measures at 10 years of age. Whether these associations develop at older ages should be further studied. https://doi.org/10.1289/EHP12267.


Subject(s)
Adiposity , Insecticides , Female , Humans , Pregnancy , Child , Prospective Studies , Obesity , Organophosphorus Compounds , Organophosphates
6.
Environ Res ; 237(Pt 2): 116967, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37634691

ABSTRACT

BACKGROUND: Per- and polyfluoroalkyl substances (PFAS) are a group of synthetic chemicals widely used in consumer and industrial products. Numerous studies have linked prenatal PFAS exposures to increased risks of adverse pregnancy outcomes such as preterm birth (PTB) and small-for-gestational age (SGA).However, limited evidence is available for the effects of PFAS on PTB subtypes and large-for-gestational age (LGA). OBJECTIVE: To examine the associations of PFAS with PTB [overall, placental (pPTB), spontaneous (sPTB)], BW Z-score, and size-for-gestational age (SGA, LGA). METHODS: Our nested case-control study included 128 preterm cases and 373 term controls from the LIFECODES cohort between 2006 and 2008 (n = 501). Plasma concentrations of nine PFAS were measured in early pregnancy samples. Logistic regression was used to assess individual PFAS-birth outcome associations, while Bayesian Kernel Machine Regression (BKMR) was used to evaluate the joint effects of all PFAS. Effect modification by fetal sex was examined, and stratified analyses were conducted to obtain fetal sex-specific estimates. RESULTS: Compared to term births, the odds of pPTB were higher from an interquartile range increase in perfluorodecanoic acid (PFDA) (OR = 1.60, 95% CI: 1.00-2.56), perfluorononanoic acid (PFNA) (OR = 1.67, 95% CI: 1.06-2.61), and perfluoroundecanoic acid (PFUA) (OR = 1.77, 95% CI: 1.00-3.12), with stronger associations observed in women who delivered males. BKMR analysis identified PFNA as the most important PFAS responsible for pPTB (conditional PIP = 0.78), with increasing ORs at higher percentiles of PFAS mixture. For LGA, positive associations were observed with PFDA and perfluorooctanoic acid in females only, and with PFUA in males only. BKMR analysis showed increasing, but null effects of PFAS mixture on LGA. CONCLUSIONS: The effect of prenatal exposure to single and multiple PFAS on PTB and LGA depended on fetal sex. Future studies should strongly consider examining PTB subtypes and sex-specific effects of PFAS on pregnancy outcomes.


Subject(s)
Alkanesulfonic Acids , Environmental Pollutants , Fatty Acids , Fluorocarbons , Premature Birth , Male , Humans , Pregnancy , Female , Infant, Newborn , Premature Birth/chemically induced , Premature Birth/epidemiology , Gestational Age , Bayes Theorem , Case-Control Studies , Polypyrimidine Tract-Binding Protein , Environmental Pollutants/toxicity , Placenta , Fetal Growth Retardation , Fluorocarbons/toxicity , Vitamins
7.
Environ Sci Technol ; 57(35): 13036-13046, 2023 09 05.
Article in English | MEDLINE | ID: mdl-37607343

ABSTRACT

Human exposure to phthalates is widespread, but assessment of variability across pregnancy has been hampered by short half-lives of phthalate biomarkers and a few repeated measures in prior studies. We aimed to characterize the variability and longitudinal profiles of phthalate and replacement biomarkers across pregnancy. Within the Human Placenta and Phthalates Study, 303 pregnant women provided urine samples at up to 8 visits across gestation. Concentrations of 14 metabolites of phthalates and 4 metabolites of replacements were quantified in each sample, and subject-specific averages within each trimester were calculated. We examined variability in individual biomarker concentrations across the 8 visits, within trimesters, and across trimester-specific averages using intraclass correlation coefficients (ICCs). To explore longitudinal exposure biomarker profiles, we applied group-based trajectory modeling to trimester-specific averages over pregnancy. Pooling multiple visits into trimester-specific averages improved the ICCs for all biomarkers. Most biomarkers generally showed stable concentrations across gestation, i.e., high-, medium-, and low-concentration profiles, with small proportions of participants falling into the "high"-exposure groups. Variability over pregnancy is likely attributable to random fluctuations around a baseline exposure rather than true changes in concentrations over time.


Subject(s)
Phthalic Acids , Pregnancy , Humans , Female , Biomarkers , Placenta
8.
Environ Health Perspect ; 131(8): 87017, 2023 08.
Article in English | MEDLINE | ID: mdl-37616158

ABSTRACT

BACKGROUND: Gestational phthalate and phenol exposure disrupts adipogenesis, contributing to obesity in mice. Whether gestational phthalate or phenol exposure is associated with infant body composition has not been investigated in humans. OBJECTIVE: We examined associations between biomarkers of phthalate and phenol exposure in midpregnancy and infant size and body composition at birth and at 5 months of age. METHODS: Analyses were conducted among 438 infants from the Healthy Start prospective pregnancy cohort. Sixteen phthalate and phenol biomarkers were quantified in spot urine samples collected at 24-28 wk of gestation. Infant outcomes measured at birth and at 5 months of age included size [weight (in grams)] and body composition [fat and lean masses (in grams); percentage fat mass]. Single- (linear) and multipollutant (quantile g-computation) models were used to estimate associations of phthalate and phenol biomarkers with infant outcomes at birth and at 5 months of age. Models were adjusted for sociodemographics, sample collection timing, and lifestyle factors and used to examine for effect modification by infant sex. RESULTS: In single-pollutant models, mono-benzyl phthalate and di-n-butyl phthalate were inversely associated with percentage fat mass [ß: -0.49 (95% CI: -0.91, -0.08) and -0.51 (95% CI: -1.02, 0.01), respectively] in male but not female infants at birth. Similar, but less precise, associations were observed at 5 months of age. In multipollutant models, a 1-quartile increase in the phthalate and phenol biomarker mixture was inversely associated with percentage fat mass at birth [-1.06 (95% CI: -2.21, 0.1)] and at 5 months of age [-2.14 (95% CI: -3.88, -0.39)] among males, but associations were null among females [0.48 (95% CI: -0.78, 1.75) and -0.64 (95% CI: -2.68, 1.41), respectively]. Similar associations were observed with infant weight. CONCLUSION: In this U.S.-based prospective cohort, gestational phthalate and phenol biomarkers were inversely associated with infant weight and fat mass, particularly in males. https://doi.org/10.1289/EHP12500.


Subject(s)
Phenol , Phenols , Female , Pregnancy , Humans , Infant , Male , Animals , Mice , Prospective Studies , Biomarkers , Body Composition
9.
Environ Res ; 229: 115975, 2023 07 15.
Article in English | MEDLINE | ID: mdl-37094650

ABSTRACT

BACKGROUND: Pregnant persons are exposed ubiquitously to phthalates and increasingly to chemicals introduced to replace phthalates. In early pregnancy, exposure to these chemicals may disrupt fetal formation and development, manifesting adverse fetal growth. Previous studies examining the consequences of early pregnancy exposure relied on single spot urine measures and did not investigate replacement chemicals. OBJECTIVE: Characterize associations between urinary phthalate and replacement biomarkers in early pregnancy and fetal growth outcomes. METHODS: Analyses were conducted among 254 pregnancies in the Human Placenta and Phthalates Study, a prospective cohort with recruitment 2017-2020. Exposures were geometric mean concentrations of phthalate and replacement biomarkers quantified in two spot urine samples collected around 12- and 14-weeks of gestation. Outcomes were fetal ultrasound biometry (head and abdominal circumferences, femur length, estimated fetal weight) collected in each trimester and converted to z-scores. Adjusted linear mixed effects (single-pollutant) and quantile g-computation (mixture) models with participant-specific random effects estimated the difference, on average, in longitudinal fetal growth for a one-interquartile range (IQR) increase in individual (single-pollutant) or all (mixture) early pregnancy phthalate and replacement biomarkers. RESULTS: Mono carboxyisononyl phthalate and the sums of metabolites of di-n-butyl, di-iso-butyl, and di-2-ethylhexyl phthalate were inversely associated with fetal head and abdominal circumference z-scores. A one-IQR increase in the phthalate and replacement biomarker mixture was inversely associated with fetal head circumference (ß: -0.36 [95% confidence interval: -0.56, -0.15]) and abdominal circumference (-0.31 [-0.49, -0.12]) z-scores. This association was mainly driven by phthalate biomarkers. CONCLUSIONS: Urine concentrations of phthalate biomarkers, but not replacement biomarkers, in early pregnancy were associated with reductions in fetal growth. Though the clinical implications of these differences are unclear, reduced fetal growth contributes to excess morbidity and mortality across the lifecourse. Given widespread global exposure to phthalates, findings suggest a substantial population health burden resulting from early pregnancy phthalate exposure.


Subject(s)
Environmental Pollutants , Phthalic Acids , Pregnancy , Female , Humans , Prospective Studies , Phthalic Acids/toxicity , Phthalic Acids/metabolism , Fetal Development , Placenta/metabolism , Environmental Pollutants/toxicity , Biomarkers , Environmental Exposure
10.
Reprod Toxicol ; 117: 108354, 2023 04.
Article in English | MEDLINE | ID: mdl-36841368

ABSTRACT

Excessive gestational weight gain contributes to adverse maternal and neonatal outcomes. Environmental exposures such as phthalates may lead to metabolic dysregulation, and studies suggest possible associations between maternal phthalate exposure and altered gestational weight gain. We assessed the association between nine maternal phthalate metabolites and measures of total gestational weight gain (pre-pregnancy to median 35.1 weeks of gestation) in a case-control study nested within LIFECODES (N = 379), a prospective birth cohort from Boston, Massachusetts (2006-2008). Our primary outcome was total gestational weight gain z score, a measure independent of gestational age that can provide a less biased estimate of this association. Our secondary outcomes were total gestational weight gain, rate of gestational weight gain, and adequacy ratio. The results were stratified by pre-pregnancy body mass index category. We found that concentrations of mono-(3-carboxypropyl) phthalate (MCPP) and mono-n-butyl phthalate (MBP) were positively associated with total gestational weight gain z scores among participants with obesity: adjusted mean difference (95% Confidence Interval [CI]) = 0.242 (0.030 - 0.455) and 0.105 (-0.002 - 0.212) corresponding to an excess weight gain of 1.81 kg and 0.77 kg at 35 weeks of gestation per interquartile range-increase in MCPP and MBP, respectively. Also, among participants with obesity, MBP demonstrated a potential non-linear relationship with gestational weight gain in cubic spline models. These findings suggest that phthalates may be related to higher gestational weight gain, specifically, among individuals with pre-pregnancy obesity. Future research should investigate whether pregnant people with obesity represent a subpopulation with sensitivity to phthalate exposures.


Subject(s)
Environmental Pollutants , Gestational Weight Gain , Phthalic Acids , Pregnancy , Infant, Newborn , Female , Humans , Maternal Exposure/adverse effects , Prospective Studies , Birth Cohort , Case-Control Studies , Phthalic Acids/adverse effects , Weight Gain , Obesity/epidemiology , Birth Weight
13.
Am J Obstet Gynecol ; 228(5): 576.e1-576.e22, 2023 05.
Article in English | MEDLINE | ID: mdl-36400174

ABSTRACT

BACKGROUND: Preterm birth is the leading cause of infant morbidity and mortality worldwide. Elevated levels of oxidative stress have been associated with an increased risk of delivering before term. However, most studies testing this hypothesis have been conducted in racially and demographically homogenous study populations, which do not reflect the diversity within the United States. OBJECTIVE: We leveraged 4 cohorts participating in the Environmental Influences on Child Health Outcomes Program to conduct the largest study to date examining biomarkers of oxidative stress and preterm birth (N=1916). Furthermore, we hypothesized that elevated oxidative stress would be associated with higher odds of preterm birth, particularly preterm birth of spontaneous origin. STUDY DESIGN: This study was a pooled analysis and meta-analysis of 4 birth cohorts spanning multiple geographic regions in the mainland United States and Puerto Rico (208 preterm births and 1708 full-term births). Of note, 8-iso-prostaglandin-F2α, 2,3-dinor-5,6-dihydro-8-iso-prostaglandin-F2α (F2-IsoP-M; the major 8-iso-prostaglandin-F2α metabolite), and prostaglandin-F2α were measured in urine samples obtained during the second and third trimesters of pregnancy. Logistic regression was used to calculate adjusted odds ratios and 95% confidence intervals for the associations between averaged biomarker concentrations for each participant and all preterm births, spontaneous preterm births, nonspontaneous preterm births (births of medically indicated or unknown origin), and categories of preterm birth (early, moderate, and late). Individual oxidative stress biomarkers were examined in separate models. RESULTS: Approximately 11% of our analytical sample was born before term. Relative to full-term births, an interquartile range increase in averaged concentrations of F2-IsoP-M was associated with higher odds of all preterm births (odds ratio, 1.29; 95% confidence interval, 1.11-1.51), with a stronger association observed for spontaneous preterm birth (odds ratio, 1.47; 95% confidence interval, 1.16-1.90). An interquartile range increase in averaged concentrations of 8-iso-prostaglandin-F2α was similarly associated with higher odds of all preterm births (odds ratio, 1.19; 95% confidence interval, 0.94-1.50). The results from our meta-analysis were similar to those from the pooled combined cohort analysis. CONCLUSION: Here, oxidative stress, as measured by 8-iso-prostaglandin-F2α, F2-IsoP-M, and prostaglandin-F2α in urine, was associated with increased odds of preterm birth, particularly preterm birth of spontaneous origin and delivery before 34 completed weeks of gestation.


Subject(s)
Premature Birth , Pregnancy , Female , Humans , Infant, Newborn , Child , United States/epidemiology , Premature Birth/epidemiology , Dinoprost/urine , Oxidative Stress , Biomarkers/metabolism , Outcome Assessment, Health Care
14.
Am J Obstet Gynecol ; 228(3): 340.e1-340.e20, 2023 03.
Article in English | MEDLINE | ID: mdl-36241081

ABSTRACT

BACKGROUND: Babies born large-for-gestational age have an increased risk of adverse health outcomes, including birth injuries, childhood obesity, and cardiometabolic disorders. However, little work has been done to characterize patterns of fetal growth among large-for-gestational age births, which may further elucidate high- and low-risk subgroups. OBJECTIVE: This study aimed to identify subgroups of large-for-gestational age births based on trajectories of fetal growth derived from prenatal ultrasound measurements and explore differences in sociodemographic, pregnancy, and birth outcome characteristics across subgroups. STUDY DESIGN: This study identified and described trajectories of fetal growth among large-for-gestational age births (n=235) in the LIFECODES Fetal Growth Study. Ultrasound measurements of fetal growth in middle to late pregnancy were abstracted from health records. Group-based multi-trajectory modeling was applied to measurements of head circumference, abdominal circumference, and femur length z-scores to identify multivariate trajectories of fetal growth. Moreover, sociodemographic variables, pregnancy characteristics, and birth outcomes based on trajectory membership were summarized. RESULTS: This study identified 4 multivariate trajectories of fetal growth among large-for-gestational age births: catch-up growth (n=28), proportional abdominal circumference-to-femur length growth (n=67), disproportional abdominal circumference-to-femur length growth (n=96), and consistently large (n=44). Fetuses in the "catch-up growth" group exhibited small relative sizes in midpregnancy (ie, below average head circumference, abdominal circumference, and femur length z-scores) and large relative sizes in late pregnancy. Growth among these births was driven by increases in relative abdominal circumference and head circumference sizes. Participants who delivered births assigned to this group were less likely to have normal glucose control (40% vs 65%-75%) and more likely to have pregestational diabetes mellitus (36% vs 10%-17%) than other large-for-gestational age subgroups. In addition, the babies in this trajectory group were more likely to have macrosomia (86% vs 67%-73%) and to be admitted to the neonatal intensive care unit (32% vs 14%-21%) than other large-for-gestational age subgroups. In contrast, babies in the "consistently large" group had the largest relative size for all growth parameters throughout gestation and experienced a lower risk of adverse birth outcomes than other large-for-gestational age subgroups. CONCLUSION: This study characterized several trajectories of fetal growth among large-for-gestational age births, which were related to different pregnancy characteristics and the distribution of adverse birth outcomes. Although the number of individuals within some trajectories was small, a subgroup that exhibited a catch-up growth phenotype during gestation was identified, which may be uniquely associated with exposure to pregestational diabetes mellitus and a higher risk of admission to the neonatal intensive care unit. These results have highlighted that the risk of adverse outcomes may not be evenly distributed across all large-for-gestational age births.


Subject(s)
Pediatric Obesity , Pregnancy Complications , Child , Humans , Female , Pregnancy , Gestational Age , Birth Weight , Ultrasonography, Prenatal/methods , Fetal Development , Fetal Macrosomia/epidemiology
15.
Heart Lung ; 57: 95-101, 2023.
Article in English | MEDLINE | ID: mdl-36088681

ABSTRACT

BACKGROUND: Guideline-directed medical therapy (GDMT) reduces mortality and hospitalizations in adults with heart failure with reduced ejection fraction (HFrEF); however, few are receiving GDMT. National registries show as few as 1% of patients are receiving appropriate GDMT. Development of heart failure clinics achieving optimal GDMT are crucial to improve outcomes for HFrEF patients. OBJECTIVE: We developed a multidisciplinary HF-Optimize clinic aimed at improving GDMT use along with providing education, resources, and comorbidity screening for adults with HFrEF. METHODS: We targeted patients with newly diagnosed HFrEF and/or recent or multiple admissions for 6 visits over 12 weeks. We measured medication use, ejection fraction, 6-minute walk test distance, and health-related quality of life (EuroQol Visual Analog Scale) at visits 1 and 6. RESULTS: One-hundred ten patients completed all visits. Patients were a mean age of 58 (±14) years, 37% were female, and 42% were of non-White race. From visit 1 to visit 6, utilization of GDMT increased from 35.5% to 85.5% (p < 0.001) and significant improvements in ejection fraction (25.9% to 35.5%, p < 0.001), 6-minute walk distance (1032 feet to 1121.7 feet, p = 0.001), and quality of life (63.8/100 vs 70.8/100, p = 0.002). Only 2 patients (1.8%) that completed HF-Optimize had a 30-day heart failure readmission. CONCLUSION: Our multidisciplinary HF-Optimize clinic improved medication usage and clinical outcomes. Further studies are needed to validate outcomes of multidisciplinary GDMT clinics.


Subject(s)
Heart Failure , Adult , Humans , Female , Middle Aged , Male , Heart Failure/drug therapy , Heart Failure/diagnosis , Stroke Volume , Quality of Life , Ventricular Function, Left , Patient Readmission
16.
Am J Obstet Gynecol ; 228(3): 334.e1-334.e21, 2023 03.
Article in English | MEDLINE | ID: mdl-36027952

ABSTRACT

BACKGROUND: Reductions in fetal growth are associated with adverse outcomes at birth and later in life. However, identifying fetuses with pathologically small growth remains challenging. Definitions of small-for-gestational age are often used as a proxy to identify those experiencing pathologic growth (ie, fetal growth restriction). However, this approach is subject to limitation as most newborns labeled small-for-gestational age are constitutionally, not pathologically, small. Incorporating repeated ultrasound measures to examine fetal growth trajectories may help distinguish pathologic deviations in growth from normal variability, beyond a simple definition of small-for-gestational age. OBJECTIVE: This study aimed to characterize phenotypes of growth using ultrasound trajectories of fetal growth among small-for-gestational-age births. STUDY DESIGN: This study identified and described trajectories of fetal growth among small-for-gestational-age births (<10th percentile weight for gestational age; n=245) in the LIFECODES Fetal Growth Study using univariate and multivariate trajectory modeling approaches. Available ultrasound measures of fetal growth (estimated fetal weight, head circumference, abdominal circumference, and femur length) from health records were abstracted. First, univariate group-based trajectory modeling was used to define trajectories of estimated fetal weight z scores during gestation. Second, group-based multi-trajectory modeling was used to identify trajectories based on concurrent measures of head circumference, abdominal circumference, and femur length z scores. Last, how these trajectories were related to patient demographics, pregnancy characteristics, and birth outcomes compared with those observed among appropriate-for-gestational-age controls was described. RESULTS: Of note, 3 univariate trajectories of estimated fetal weight and 4 multivariate trajectories of fetal growth among small-for-gestational-age births were identified. In our univariate approach, infants with the smallest estimated fetal weight trajectory throughout pregnancy had poorer outcomes, including the highest risk of neonatal intensive care unit admission. The remaining univariate trajectory groups did not have an elevated risk of adverse birth outcomes relative to appropriate-for-gestational-age controls. In our multivariate approach, 2 groups at increased or moderately increased risk of neonatal intensive care unit admission were identified, including infants that remained extremely small for all parameters throughout pregnancy and those who had disproportionately smaller femur length and abdominal circumference compared with head circumference. The remaining multivariate trajectory groups did not have an elevated risk of adverse birth outcome relative to appropriate-for-gestational-age controls. CONCLUSION: Latent class group-based trajectory modeling applied to ultrasound measures of fetal growth may help distinguish pathologic vs constitutional growth profiles among newborns born small-for-gestational age. Although trajectories cannot be fully characterized until delivery, limiting the direct clinical application of these methods, they may still contribute to the development of approaches for separating growth restriction from constitutional smallness.


Subject(s)
Fetal Growth Retardation , Infant, Newborn, Diseases , Pregnancy , Humans , Female , Infant, Newborn , Fetal Growth Retardation/diagnostic imaging , Fetal Weight , Fetal Development , Infant, Small for Gestational Age , Gestational Age , Ultrasonography, Prenatal , Birth Weight
17.
Stat Med ; 41(24): 4791-4808, 2022 10 30.
Article in English | MEDLINE | ID: mdl-35909228

ABSTRACT

Studies on the health effects of environmental mixtures face the challenge of limit of detection (LOD) in multiple correlated exposure measurements. Conventional approaches to deal with covariates subject to LOD, including complete-case analysis, substitution methods, and parametric modeling of covariate distribution, are feasible but may result in efficiency loss or bias. With a single covariate subject to LOD, a flexible semiparametric accelerated failure time (AFT) model to accommodate censored measurements has been proposed. We generalize this approach by considering a multivariate AFT model for the multiple correlated covariates subject to LOD and a generalized linear model for the outcome. A two-stage procedure based on semiparametric pseudo-likelihood is proposed for estimating the effects of these covariates on health outcome. Consistency and asymptotic normality of the estimators are derived for an arbitrary fixed dimension of covariates. Simulations studies demonstrate good large sample performance of the proposed methods vs conventional methods in realistic scenarios. We illustrate the practical utility of the proposed method with the LIFECODES birth cohort data, where we compare our approach to existing approaches in an analysis of multiple urinary trace metals in association with oxidative stress in pregnant women.


Subject(s)
Linear Models , Bias , Computer Simulation , Female , Humans , Limit of Detection , Pregnancy , Probability
18.
JAMA Pediatr ; 176(9): 895-905, 2022 09 01.
Article in English | MEDLINE | ID: mdl-35816333

ABSTRACT

Importance: Phthalate exposure is widespread among pregnant women and may be a risk factor for preterm birth. Objective: To investigate the prospective association between urinary biomarkers of phthalates in pregnancy and preterm birth among individuals living in the US. Design, Setting, and Participants: Individual-level data were pooled from 16 preconception and pregnancy studies conducted in the US. Pregnant individuals who delivered between 1983 and 2018 and provided 1 or more urine samples during pregnancy were included. Exposures: Urinary phthalate metabolites were quantified as biomarkers of phthalate exposure. Concentrations of 11 phthalate metabolites were standardized for urine dilution and mean repeated measurements across pregnancy were calculated. Main Outcomes and Measures: Logistic regression models were used to examine the association between each phthalate metabolite with the odds of preterm birth, defined as less than 37 weeks of gestation at delivery (n = 539). Models pooled data using fixed effects and adjusted for maternal age, race and ethnicity, education, and prepregnancy body mass index. The association between the overall mixture of phthalate metabolites and preterm birth was also examined with logistic regression. G-computation, which requires certain assumptions to be considered causal, was used to estimate the association with hypothetical interventions to reduce the mixture concentrations on preterm birth. Results: The final analytic sample included 6045 participants (mean [SD] age, 29.1 [6.1] years). Overall, 802 individuals (13.3%) were Black, 2323 (38.4%) were Hispanic/Latina, 2576 (42.6%) were White, and 328 (5.4%) had other race and ethnicity (including American Indian/Alaskan Native, Native Hawaiian, >1 racial identity, or reported as other). Most phthalate metabolites were detected in more than 96% of participants. Higher odds of preterm birth, ranging from 12% to 16%, were observed in association with an interquartile range increase in urinary concentrations of mono-n-butyl phthalate (odds ratio [OR], 1.12 [95% CI, 0.98-1.27]), mono-isobutyl phthalate (OR, 1.16 [95% CI, 1.00-1.34]), mono(2-ethyl-5-carboxypentyl) phthalate (OR, 1.16 [95% CI, 1.00-1.34]), and mono(3-carboxypropyl) phthalate (OR, 1.14 [95% CI, 1.01-1.29]). Among approximately 90 preterm births per 1000 live births in this study population, hypothetical interventions to reduce the mixture of phthalate metabolite levels by 10%, 30%, and 50% were estimated to prevent 1.8 (95% CI, 0.5-3.1), 5.9 (95% CI, 1.7-9.9), and 11.1 (95% CI, 3.6-18.3) preterm births, respectively. Conclusions and Relevance: Results from this large US study population suggest that phthalate exposure during pregnancy may be a preventable risk factor for preterm delivery.


Subject(s)
Phthalic Acids , Premature Birth , Adult , Biomarkers , Female , Humans , Infant, Newborn , Maternal Exposure/adverse effects , Odds Ratio , Phthalic Acids/urine , Pregnancy , Pregnant Women , Premature Birth/epidemiology
19.
Sci Total Environ ; 835: 155596, 2022 Aug 20.
Article in English | MEDLINE | ID: mdl-35490822

ABSTRACT

BACKGROUND: Lower socioeconomic status (SES) and elevated psychosocial stress are known contributors to adverse pregnancy outcomes; however, biological mechanisms linking these factors to adverse pregnancy outcomes are not well-characterized. Oxidative stress may be an important, yet understudied mechanistic pathway. We used a pooled study design to examine biological, behavioral, and social factors as predictors of prenatal oxidative stress biomarkers. METHODS: Leveraging four pregnancy cohorts from the Environmental influences on Child Health Outcomes (ECHO) Program spanning multiple geographic regions across the United States (U.S.) (N = 2082), we measured biomarkers of oxidative stress in urine samples at up to three time points during pregnancy, including 8-isoprostane-prostaglandin F2α (8-isoPGF2α), its major metabolite, 2,3-dinor-5,6-dihydro-15-F2t-isoprostane, and prostaglandin F2α (PGF2α). Maternal age, pre-pregnancy body mass index, marital/partnered status, parity, and smoking status were included as biological and behavioral factors while race/ethnicity, maternal education, and stressful life events were considered social factors. We examined associations between each individual biological, behavioral, and social factor with oxidative stress biomarkers using multivariable-adjusted linear mixed models. RESULTS: Numerous biological, behavioral, and social factors were associated with elevated levels of 8-isoPGF2α, its major metabolite, and PGF2α. Pregnant people who were current smokers relative to non-smokers or had less than a high school education relative to a college degree had 11.04% (95% confidence interval [CI] = -1.97%, 25.77%) and 9.13% (95% CI = -1.02%, 20.32%) higher levels of 8-isoPGF2α, respectively. CONCLUSIONS: Oxidative stress biomarkers are elevated among pregnant people with higher socioeconomic disadvantage and may represent one pathway linking biological, behavioral, and social factors to adverse pregnancy and child health outcomes, which should be explored in future work.


Subject(s)
Biological Products , Oxidative Stress , Biomarkers/metabolism , Child , Female , Humans , Isoprostanes , Oxidation-Reduction , Pregnancy , United States
20.
Environ Res ; 212(Pt B): 113342, 2022 09.
Article in English | MEDLINE | ID: mdl-35461852

ABSTRACT

Phthalate exposure has been associated with adverse reproductive outcomes and oxidative stress is a potential mechanism by which they act. However, few human studies have explored co-exposure confounding or joint effects. Furthermore, most studies examine associations between biomarkers of exposure and oxidative stress from the same urine sample. We investigated single-exposure, co-exposure-adjusted, and joint associations between phthalate metabolites and oxidative stress in the Environment and Reproductive Health (EARTH) study among couples undergoing fertility treatment. We examined cross-sectional associations in both women and men, and longitudinal associations in women. Urine was collected in the follicular phase (women only) and at the time of fertility procedure (women and men), and analyzed for 11 phthalate metabolites. Urine from the time of fertility procedure was analyzed for oxidative stress biomarkers, including free 8-iso-prostaglandin F2α (8-iso-PGF2α), its primary metabolite (2,3-dinor-5,6-dihydro-15-F2t-isoprostane [F2-IsoP-M]), and prostaglandin F2α (PGF2α). Linear mixed effects models were used to estimate single-exposure associations. Bayesian Kernel Machine Regression (BKMR) was used to adjust for co-exposures and to estimate joint effects. Among women, we observed positive associations between all phthalate metabolites and oxidative stress biomarkers in single-exposure models, but there was clear co-exposure confounding. For instance, in a single-exposure model, we estimated a 63% (95% confidence interval: 51, 77) increase in the 8-iso-PGF2α metabolite per interquartile range (IQR) difference in mono-n-butyl phthalate (MBP) versus a 34% (95% credible interval: 12, 60) increase in co-adjusted models. However, several phthalate metabolites remained associated with oxidative stress in co-exposure models, and the joint effects of all exposures were high (e.g., an 114% increase in the 8-iso-PGF2α metabolite per IQR difference in all exposures). Longitudinal results were also attenuated compared to cross-sectional results in women; however, the joint effect of all exposures and the 8-iso-PGF2α metabolite remained positive and statistically significant (11% increase per IQR difference in all exposures, 95% credible interval: 0.2, 23). In men, associations were generally less pronounced, although the joint effect of the mixture on 8-iso-PGF2α was above the null. Because oxidative stress is related to reproductive success among couples seeking fertility treatment, mitigating phthalate exposure should be considered as a potentially beneficial measure.


Subject(s)
Environmental Pollutants , Phthalic Acids , Bayes Theorem , Biomarkers/urine , Cross-Sectional Studies , Environmental Pollutants/urine , Female , Humans , Male , Oxidative Stress , Phthalic Acids/urine , Prostaglandins
SELECTION OF CITATIONS
SEARCH DETAIL
...